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The evolution of disturbances after a laminar, slightly supercritical flow between 
parallel planes is disturbed is considered as an initial-value problem. An asymp- 
totic solution of the disturbances for large time possesses the same characteristic 
features as the turbulent spots observed by Emmons (1951). 

~ 

Introduction 
Attempts have been made in the past to describe the development of three- 

dimensional disturbances in laminar parallel flow. Benjamin (1961) and 
Criminale & Kovasznay (1962) had investigated this question in some detail and 
reported some important conclusions. Here, the problem is treated by the initial- 
value approach following the ideas of Case (1960, 1962) and Dikii (1960). It is 
found that, for large time after a laminar, slightly supercritical plane Poiseuille 
flow is disturbed, the disturbance is confined to a triangular region resembling 
the turbulent spots observed by Emmons (1951). 

Analysis 
Consider laminar flow between two parallel planes. Let t ( z )  be the undisturbed 

velocity and choose a co-ordinate system such that x is in the direction of flow, 
z is in the direction normal to the planes, and y is perpendicular to x and z. By 
eliminating pressure from the dimensionless, linearized Navier-Stokes equations, 
the velocity component w in the z-direction is governed by the single equation 

a a aw 1 
- (V2W) + u - (VZW) - U" - = - v4w. ax R at ax 

The boundary conditions on w are 
w = awlaz = 0 ( z  = 1). (2) 

The initial-value problem of (1) and (2) can be solved by the Fourier-Laplace 
transform technique, which reduces essentially to the construction of a Green's 
function G(z, z,; a, /3,p) satisfying the following properties: 

( D 2 - ~ 2 - / 3 2 ) 2 G - i ~ R  ~ + r  ( D ~ - c z ~ - / ~ ~ ) G - Z " G  = &(z-x, ) ,  (3) [(- 3 1 
G = DG = 0, z = 1, D = d/dz, 

where a, ,!3 and p are the transformed variables of x, y and t. 
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If q5{ (i = 1 to 4) are four linearly independent solutions of the homogeneous 
equation (3), a linear combination of them can be used to construct the function 
G in the usual way (Case 1960). The following properties of G can be deduced. 

(i) The poles of G in the p-plane are the eigenvalues of the normal mode 
method. 

(ii) If p, = ?(a, P )  - iw (a ,  P )  is a pole, Po = y( - a,P) + iw (  - a, P )  is also a 
pole. 

(iii) When evaluated at  a pole, the function @ -13,) G has the functional form 
q 5 e ( ~ ,  a,P,p,) A(z,, a,p,pO), where q5e is the eigenfunction of (3). 

The general solution of (1) and (2) is 
m m fl r + i m  

w = j - m  J-as-1 J r - $ m  
G(z, 2,; a, P, P) $(a, B, 2,) exp (iax + iPy +pt) dp dz, da dp, 

(4) 
where $(a, p, 2,) depends on the initial conditions. 

iw 
p-plane 

FIGURE 1. p-plane. 

Consideration will now be restricted to slightly supercritical flow when only a 
pair of simple poles of G lie on the right half of the p-plane for a certain range of 
a,p. The study of Squire (1933) and Watson (1960) on the eigenvalue problem 
associated with (3) shows that at  slightly supercritical conditions y(a, P )  has 
a positive maximum at a = a,, ,8 = 0, where a, is the wave-number of maximum 
amplification for two-dimensional disturbance. Therefore, for large t, only values 
of a and /3 near this maximum point make significant contributions to the 
integral (figure 1). On deforming the contour integral of (3) to the left in the 
p-plane for large t: 

w(x, y, z, t )  N 1; + I, (from the pair of poles), (5 )  

A@,, 0) is a constant. 
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I n  (6), y and w can be approximated by 
19 

(7) 

and 

(Note: in (7), 

w ( a , B )  = w(a,, 0 )  + 

($)() = (S), = ($ )o  = O 

since p appears as p2 in (3).) 

FIGURE 2. Propagation of disturbance at slightly supercritical flow. 

Substitute (7) into (6) and integrate, and note that 1. yields the complex 
conjugate of 11: 

8 7 ~ A # ~ ( z )  exp{i(a,x- mot) )  
abt w N Re( 

For large t ,  the value of w as given by (8) is exponentially small if (x, y )  is 
outside the region defined by 

(8) and (9) show that the disturbance is confined to an ellipse with semi-axes 
(yo)4at and (yo)4bt in the x and y directions. This ellipse subtends an angle 28 at 
the origin (figure Z ) ,  where 
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The disturbance propagates downstream with velocity equal to (aw/&),. This 
is the group velocity of the most amplified two-dimensional wave. 

To find the other velocity components u and v, the same Pourier-Laplace 
transform method can be used. The problem then reduces to the construction of 
the following Green's function H(x ,  zo; a, P,p) satisfying 

(02--2-P2)H-R(p+ii"oU)H = 6(z-zo) ,  H = 0, x = * 1. (11) 

The study of Squire (1933) shows that the poles of H in the complex p-plane 
always lie on the left half plane for all values of a, ,8. Therefore, at slightly super- 
critical flow for large t ,  u and v have the same general behaviour as w. 

Concluding remarks 
The above results show that, if a laminar flow at slightly supercritical condition 

is disturbed locally, then after a sufficiently long time (not too long to make the 
non-linear terms so far neglected important), a spot of disturbance will form. The 
spot is essentially an expanding ellipse which subtends an angle 20 (equation 10) 
at  the origin and sweeps out a triangular region in the (x, y)-plane in the course of 
time. The spot moves downstream with constant velocity (aw/aa), which is the 
group velocity of the most amplified two-dimensional wave as obtained by the 
normal mode method. It is interesting to point out that the characteristic 
features of the disturbance are the same as those of the turbulent spots observed 
by Emmons (1951). Although the present investigation is based on a linear 
analysis, yet with some reservation it is possible to use the above results to 
estimate the characteristic constants of Emmons's theory of turbulent spots 
theoretically. 

The author wishes to thank Professor W. D. Rannie for his encouragement 
during the course of this work. 
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